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Does the Boltzmann Principle Need a Dynamical
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In an attempt to derive thermodynamics from classical mechanics, an approx-
imate expression for the equilibrium temperature of a finite system has been
derived (M. Bianucci, R. Mannella, B. J. West and P. Grigolini, Phys. Rev. E
51: 3002 (1995)) which differs from the one that follows from the Boltzmann
principle S = k ln Ω(E) via the thermodynamic relation 1/T = ∂S/∂E by addi-
tional terms of “dynamical” character, which are argued to correct and gen-
eralize the Boltzmann principle for small systems (here Ω(E) is the area of
the constant-energy surface). In the present work, the underlying definition of
temperature in the Fokker–Planck formalism of Bianucci et al., is investigated
and shown to coincide with an approximate form of the equipartition temper-
ature. Its exact form, however, is strictly related to the “volume” entropy S =
k ln Φ(E) via the thermodynamic relation above for systems of any number of
degrees of freedom (Φ(E) is the phase space volume enclosed by the constant-
energy surface). This observation explains and clarifies the numerical results of
Bianucci et al., and shows that a dynamical correction for either the tempera-
ture or the entropy is unnecessary, at least within the class of systems consid-
ered by those authors. Explicit analytical and numerical results for a particle
coupled to a small chain (N ∼ 10) of quartic oscillators are also provided to
further illustrate these facts.

KEY WORDS: Brownian motion; low-dimensional chaos; adiabatic invariance;
bulk entropy; Fermi–Pasta–Ulam; quartic interaction; noncanonical distribu-
tion.

1. INTRODUCTION

In the notation of Planck, the connection between the thermodynamic
entropy S of an isolated system and its number of accessible states W is
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often introduced as what Einstein called the Boltzmann principle(1)

S =k ln W. (1)

For classical systems, where the number of states is replaced by continuum
integrals over the phase space, two common definitions of entropy for iso-
lated systems are3 (see e.g., refs. 2 or 3 and references therein)

SΦ =k ln Φ(E), (2)

SΩ =k ln Ω(E), (3)

where

Φ(E)=
∫

H(z)<E
dz =

∫
dzθ [E −H(z)] (4)

is the volume under the constant-energy surface, and

Ω(E)=
∫

H(z)=E
dz =

∫
dzδ[E −H(z)] (5)

is the “area” of that surface. Here H(z) is the Hamiltonian, z denotes
a point in the phase space, θ(x) is the Heaviside step function and δ(x)

is the Dirac delta function. These two expressions for S will be referred
to as the volume and area entropies, respectively. It is generally acknowl-
edged that a specific choice of S above is immaterial in the thermodynamic
limit(2,3), for therein these expressions differ by terms increasingly small,
but in the opposite limit of only a few degrees of freedom they lead to
appreciably different observables, most notably the equilibrium tempera-
ture (given by the thermodynamic relation 1/T = ∂S/∂E).(4) The temper-
atures that follow from Eqs. (2) and (3) via this thermodynamic relation
will be similarly referred to as the volume (TΦ ) and area (TΩ ) tempera-
tures.

Almost a decade ago, Bianucci et al. (BMWG henceforth) set out
to provide a “derivation,” and generalization, of the Boltzmann princi-
ple4 (Eq. (3)) with particular emphasis on systems far away from the ther-

3 The prefactors 1/N ! and 1/h3N are omitted since they are irrelevant in the present context.
4 It is important to stress that what these authors refer to as the Boltzmann principle is the

particular case of Eq. (3).
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modynamic limit.(5) Such generalization, which will be concisely reviewed
in Section 2, is based upon the derivation of an approximate equation
of motion for the reduced probability distribution of the degrees of free-
dom of interest, which is then compared with a postulated form of the
Fokker–Planck equation (12). This comparison allows BMWG to put
forward a microscopic expression for the temperature (Eq. (14) in the pres-
ent work), and additional assumptions allow them to relate their temper-
ature expression TB with the phase space area Ω (Eq. (18)). Since the
resulting relationship between TB and Ω differs from the one that follows
from Eq. (3) via the thermodynamic relation 1/T = ∂S/∂E by additional
terms that only vanish in the thermodynamic limit, Bianucci et al. are led
to conclude that they have found a generalization of the Boltzmann prin-
ciple for finite systems. This fact is confirmed by BMWG through numer-
ical simulations of a particle coupled to a chain of oscillators, in which
the authors measure the average of twice the kinetic energy of the particle
and compare it with the predicted value from their proposed temperature
expression.

It is clear from the above discussion that an implicit assumption in
the work of BMWG is the coincidence of their analytic temperature defi-
nition TB (Eq. (18)) with

〈
v2
〉

(twice the average kinetic energy, where we
temporarily set the mass and the Boltzmann constant to unity), i.e., it
is assumed that their temperature definition coincides with, or at least
approximates the familiar equipartition one. Since it was actually the lat-
ter quantity that was used to assess the quality of the former and not the
other way around, one can say that the endeavor of BMWG was to find a
dynamical method for evaluating

〈
v2
〉

in terms of the phase space structure
of the system, and that the failure of Eq. (3) in predicting the equilib-
rium temperature of their numerical experiments is related to the break-
down of the equation

〈
v2
〉= (∂SΩ/∂E)−1 for finite systems. As shown in

the present investigation, the BMWG temperature TB is in fact an approx-
imation to the equipartition one, but if one assumes mixing as BMWG
did in the final stages of their investigation, the asymptotic value of

〈
v2
〉

becomes exactly related to SΦ (Eq. (24)) for any system size, establish-
ing incidentally the equivalence between the equipartition and the vol-
ume temperatures. This shows not only that the Boltzmann principle in
Eq. (3) is indeed inappropriate to predict the equipartition temperature of
small systems(4), but also that the dynamical corrections to SΩ suggested
in the work of ref. 5 are unnecessary, since an alternate and equally legit-
imate form of the Boltzmann principle (Eq. (2)) is sufficient for that pur-
pose. This observation translates immediately into a negative answer to the
question posed in the title of the present work, so long as one answers it
in the context of the work of BMWG.
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The remaining of this paper is organized as follows. After review-
ing the formalism of BMWG (Section. 2), it will be shown that the tem-
perature expression found in ref. 5 is an approximation to the usual one
defined through the equipartition theorem, and hence that the expression
derived therein as a generalization of the Boltzmann principle is but a
particular approximation to the volume entropy (Section. 3). These find-
ings will be illustrated by means of a Hamiltonian model similar to that
of BMWG (Section. 4), where in addition the distribution of momenta is
computed and seen to depart from the canonical one. This provides, in
turn, an alternate means of explaining the inability of the area tempera-
ture to predict the average of twice the kinetic energy of a particle, as seen
in the numerical experiments of Bianucci et al.

2. THE DYNAMICAL APPROACH OF BMWG

In order to understand the origin of the dynamical generalization of
the Boltzmann principle mentioned above, it is worth reviewing the scope
and results of BMWG. The authors of ref. 5 were concerned with prob-
lems whose degrees of freedom can be separated into “system of interest”
and “irrelevant,” the latter playing the role of what is commonly known as
heat bath or thermostat in the literature. However, in order to avoid con-
fusion with the usual Fokker–Planck equation approach to their problem,
in which the irrelevant degrees of freedom are assumed to be in a specific
macroscopic state (usually a canonical one, see e.g., refs. 6,7), the word
booster was adopted instead. Therefore, the general goal of BMWG was
to derive the thermostatistical properties of a system coupled to a (finite
or infinite) bath whose thermal properties arise naturally from dynamics,
bridging the gap between mechanics and thermodynamics much like the
ideas of Boltzmann.

Notwithstanding the avoidance of macroscopic assumptions, two fun-
damental properties concerning the dynamics of the booster had to be
assumed in order to make the problem amenable to their analytical
approach, namely (i) it is chaotic enough so that its correlation functions
decay in a finite time (finite correlation time) and (ii) the average response
of the system to an external perturbation is linear (linear response). In
addition, the system of interest was taken to be a single particle with coor-
dinates x, v linearly coupled to the booster via a “doorway” variable ξ ,
so that � · ξ can be interpreted as an external force driving the parti-
cle (or, vice versa, � · x for the booster) whose coupling strength � has
to be sufficiently small to justify their perturbative approach (weak cou-
pling condition). Condition (i) implies in particular that the unperturbed
autocorrelation function of the doorway variable (with 〈·〉0 indicating an
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equilibrium average in the absence of coupling), viz.

ϕ(t)≡ 〈ξ(t)ξ(0)〉0〈
ξ2
〉
0

, (6)

vanishes for finite t (with 〈ξ〉0 =0), which in turn implies that the correla-
tion time

τ ≡
∫ ∞

0
dt ϕ(t) (7)

is finite. Condition (ii) states that the average behavior of the doorway
variable after the introduction of an external time-dependent perturbation
K(t) to its equation of motion can be written as the following convolution
(recall the assumption 〈ξ〉0 =0 above)

〈ξ(t)〉K =
∫ t

0
du S(u)K(t −u)+O(K2), (8)

where S(u) is a function that dictates how the average of ξ responds to
the small perturbation K(t) (response function). Together with (i), condi-
tion (ii) furnishes two other finite quantities, the asymptotic susceptibility

χ ≡ lim
t→∞χ(t)≡ lim

t→∞

∫ t

0
duS(u) (9)

and the response time

ϑ ≡
∫ ∞

0
dt c(t), (10)

where the convenient variable c(t) ≡ 1 − (χ(t)/χ) was introduced so that
c(0)=1 and c(∞)=0.

Relying on the above assumptions (and also on a few others concern-
ing the separation of time-scales) and equipped with a specific projection
technique, Bianucci and his collaborators embarked on the rather remark-
able endeavor of “integrating out” the irrelevant degrees of freedom of the
booster without the precise knowledge of its Hamiltonian structure, ulti-
mately in the search of a differential equation governing the time evolution
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of the reduced distribution function of the particle, which can be formally
written as(5)

σ(x, v; t)≡
∫

dξ d�ρ(x, v,�, ξ ; t), (11)

where ρ(x, v,�, ξ ; t) is the distribution function of all the dynamical vari-
ables and � denotes the remaining degrees of freedom of the booster. The
resulting differential equation, Eq. (47) in ref. 5, is then identified with a
general 2D Fokker–Planck equation of the type

∂

∂t
σ (x, v; t) =

{
Leff

a + ∂

∂v
A(x, v)

(
∂

∂v
+ mv

kTB

)

+ ∂

∂v
B(x, v)

(
∂

∂x
+ U ′(x)

kTB

)}
σ(x, v; t), (12)

where

Leff
a = U ′(x)

m

∂

∂v
−v

∂

∂x
(13)

is the effective time evolution operator (Liouvillian) of the unperturbed
particle. From a comparison between the coefficients of their equation
and the structure of the above equation, they suggest (despite the implicit
dependence on the particle coordinates x, v) that the following expres-
sion should be identified with the temperature of the booster (Eq. (52) in
ref. 5):

kTB(x, v)≡
〈
ξ2
〉
0

χ

∫∞
0 duϕ(u)

[
∂
∂x

xa(t −u)
]

∫∞
0 duc(u)

[
∂
∂x

xa(t −u)
] , (14)

where xa(t −u) is the unperturbed evolution of the position of the parti-
cle “backwards in time” (being essentially the responsible for the implicit
dependence of TB on x, v). The subscript in TB stands for BMWG. To
render the above equation independent of x, v, BMWG consider the fol-
lowing three cases: (a) the particle is a harmonic oscillator with V (x) =
(mω2x2)/2; (b) ϕ(u) = c(u); and (c) a “natural time scale” (NTS) condi-
tion exists separating the typical timescale of the system of interest from
the relaxation TS of the booster (the former being much greater than the
latter). Under condition (a), the temperature reduces to

kTB =
〈
ξ2
〉
0

χ

Re
[
ϕ̂(ω)

]
Re
[
ĉ(ω)

] (15)
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with hats indicating a Fourier transform, whereas in the case of NTS (c)
one obtains

kTB =
〈
ξ2
〉
0 τ

χϑ
(16)

which coincides with the one obtained within a Langevin approach (cf.
Eq. (22) in ref. 5), as expected from the dichotomy of the time scales.
Condition (b), however, is peculiar in the sense that it recovers the usual
canonical results, which (with the exception of making the connection with
Kubo’s linear response theory clear) was not particularly relevant for the
remaining part of their work.

To draw a parallel with Boltzmann’s principle, BMWG invoked mix-
ing for the booster, in which case the time-dependent susceptibility can be
found via “geometrical” arguments to assume the form(8)

χ(t)= 1
Ωb(E)

∂

∂E

{
Ωb(E)

〈
ξ2
〉
0

[1−ϕ(t)]
}

, (17)

where Ωb(E) is the phase space area of the unperturbed booster with
energy E. With this result in hand, one can write, for the case (c) above
for example,

1
kTB

= ∂

∂E
ln Ωb(E)+ ∂

∂E
ln
(〈

ξ2
〉
0
τ
)

, (18)

whereas for case (a) one simply replaces τ with Re
[
ϕ̂(ω)

]
in this expres-

sion. This result should be contrasted with the one obtained from what
BMWG calls the Boltzmann principle (i.e. Eq. (3)), namely

1
kTΩ

= ∂

∂E
ln Ω(E). (19)

The additional term in Eq. (18), called by BMWG a “dynamical correc-
tion” to Eq. (19), is then argued to become negligible for sufficiently large
systems, thus recovering the result above and causing no conflict with the
standard macroscopic thermostatistics of Boltzmann, i.e., the Boltzmann
principle has been “generalized” to cover systems with only a few degrees
of freedom. In Section 3, it is shown that this generalization is actually an
approximate form of the volume temperature TΦ .
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3. CONNECTION WITH THE VOLUME TEMPERATURE

AND ENTROPY

Besides heuristic arguments of units, it is not clear how one can iden-
tify the “constant” TB (Eq. (14)) obtained by BMWG through a compar-
ison with Eq. (12) as an actual temperature. In the usual derivation of
the Fokker–Planck equation (or, equivalently, of the Langevin equation)
for a Brownian particle(9,10), the temperature comes into play by invok-
ing the equipartition theorem, viz. kT ≡m〈v2〉 (this is indeed the case for
the Langevin treatment of BMWG, cf. Eq. (22) in ref. 5, but in the case
of the Fokker–Planck equation derived by BMWG or the generic one in
Eq. (12), both with x, v-dependent coefficients, it is difficult to see whether
their temperature definition is compatible with equipartition. Nevertheless,
after the simplifications introduced by any of the cases (a), (b), or (c) of
Section 2 (the only ones considered by BMWG in their generalization of
the Boltzmann principle), one can show that the definition of kTB coin-
cides with an approximate form of m〈v2〉. Indeed, focusing on condition (c)
for notational simplicity (the remaining cases (a) and (b) follow by a triv-
ial modification of the procedure below), the time-independent differential
equation satisfied by σ̃ (x, v) obtained via the projection method reduces
to (cf. Eq. (47) of ref. 5)

0 = −v
∂σ̃

∂x
+ V ′(x)

m

∂σ̃

∂v
− �2xχ

m

∂σ̃

∂v
+ �2

〈
ξ2
〉
0 τ

m2

∂2σ̃

∂v2

+�2
〈
ξ2
〉
0 η2

m2

∂2σ̃

∂v∂x
+ �2χϑ

m

∂

∂v
(vσ̃ )

+�2χβ2

m

∂σ̃

∂v
, (20)

where the constants η2 and β2 are defined in Eqs. (6) and (13) of ref. 5.
The tilde indicates that the distribution here is not identical to Eq. (11)
due to the approximations carried out in the actual process of integration,
or “projection” (see below). Multiplying the above equation through by v2

and integrating over x, v, most terms disappear under the assumption that
σ̃ (x, v)→ 0 sufficiently fast for x, v →∞ and 〈x〉σ̃ =〈v〉σ̃ = 0 (for simplic-
ity I assume the average position of the particle is centered at the origin,
though it is not difficult to adapt this derivation for the general case), so
one is left with

0= 2�2
〈
ξ2
〉
0 τ

m2
− 2�2χϑ

m
〈v2〉σ̃ , (21)
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where 〈·〉σ̃ ≡ ∫∞
−∞ dx

∫∞
−∞ dv · σ̃ (x, v). Solving this equation for m

〈
v2
〉
σ̃

we
obtain the right-hand side of Eq. (16), i.e., m

〈
v2
〉
σ̃

= kTB. This is the
desired connection between TB and the equipartition temperature, q.e.d.

It is important to emphasize, however, that the reduced density σ̃

(and hence the aforementioned connection) is only approximate. This can
be seen in the discussion of paragraph 1, page 3005 of ref. 5—apart from
conditions (i) and (ii) of Section 2, it is always assumed that there is a
large separation of relaxation and intrinsic time scales of the booster. This
condition, which amounts to an assumption of weak coupling, was used
explicitly between Eqs. (39) and (40) of ref. 5 (note also that Eq. (39) of
ref. 5 is itself a perturbative result). We now note that the exact average
m〈v2〉σ , obtained with σ (Eq. (11)) before the approximations carried out
in the projection method of BMWG which lead to σ̃ , furnishes the follow-
ing expression:

m〈v2〉σ =m

∫
dx dv dξ d�v2 δ[E −H(x, v, ξ,�)]

Ω(E)
, (22)

where H(x, v, ξ,�) is the Hamiltonian of the system + booster, and

ρ(x, v, ξ,�)= δ[E −H(x, v, ξ,�)]
Ω(E)

(23)

is the asymptotic solution of the Liouville equation for mixing systems
(microcanonical distribution, cf. ref. 8), in accordance with the assumption
of mixing in Section. IV-D of ref. 5. By means of simple integral manipu-
lations used in the generalized equipartition theorem (see e.g., refs. 2 and
4), we can rewrite Eq. (22) in terms of the volume entropy SΦ =k ln Φ(E)

as

m
〈
v2
〉
σ

=
[

∂

∂E
ln Φ(E)

]−1

=k

(
∂SΦ

∂E

)−1

≡kTΦ. (24)

Observe that, contrary to the approximate conclusion made after Eq. (21),
the above equation establishes an exact equivalence between the equipar-
tition and the volume temperatures, as already anticipated in Section 1,
showing that the knowledge of the phase space volume alone (or SΦ ) is
sufficient to predict the equilibrium value of m

〈
v2
〉
σ

. Though not new(2,4),
this result renders the dynamical corrections introduced in ref. 5 unneces-
sary. This fact is illustrated in Section 4 by means of explicit analytical and
numerical calculations.
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4. QUARTIC OSCILLATORS: AN ANALYTICALLY

TRACTABLE MODEL

In this last section a specific Hamiltonian model will be analyzed
both analytically and numerically. Since BMWG relied on a similar model
to illustrate their findings, the present analysis serves the similar purpose
of illustrating on an equal footing the results established in Section 3. It
also shows that, for such small systems where Eqs. (2) and (3) yield appre-
ciably different results, a noncanonical distribution of momenta is a nec-
essary and fundamental property, in contrast to what is argued in ref. 5.

The model adopted herein is described by the Hamiltonian structure

H(z)=H1(x,p)+H2(�,�)+g H1,2(x, φ0), (25)

where x,p and �= (φ0, . . . , φN−1), �= (π0, . . . , πN−1) are the particle and
booster canonically conjugate coordinates, respectively, g is a controllable
coupling constant and

H1(x,p)= p2

2
+ 1

2
ω2x2, (26)

H2(�,�)=
N−1∑
i=0

π2
i

2
+

N−1∑
i=1

[
φ4

i

4
+ (φi −φi−1)

4

4

]
, (27)

H1,2(x, φ0)=x φ0, (28)

are the particle, booster and coupling Hamiltonians, respectively. The
intrinsic time scale of the particle is set by ω−1, whereas its coupling with
the booster is set linearly through the “doorway” variable φ0. It should
be noted that this model can be rendered unphysical when ω → 0 (i.e., in
the free particle limit) since the energy would no longer be bounded from
below (due to the remaining linear coupling term H1,2) and thence no sta-
ble thermodynamical state would exist(11) (that shall not concern us here
since ω will always be nonzero).

The essential difference between the above model and the one adopted
by BMWG is the absence of harmonic terms in the booster Hamiltonian,
which permits a simple analytic treatment based on scaling arguments, as
we shall see in the next sections. While not particularly relevant for the
present analysis, it will also be shown that this model retains most of
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the quantitative features of the model of ref. 5 (see, in particular, q and
E below). More important than these quantitative similarities is its mix-
ing behavior which, just as in the model of BMWG, is suggested by the
numerical experiments through the observed finite relaxation time towards
a unique equilibrium state.

For the numerical simulations to be reported soon, the equations
of motion were evolved with an optimized fourth-order symplectic inte-
grator(12), resulting in numerical energy fluctuations �E/E smaller than
one part in 106. Initial conditions were picked randomly from the den-
sity ρ(x,p,�,�; t = 0) = δ(x)δ(p)δ(H2 − E)(5), and no dependence of the
observables in equilibrium on these configurations was observed (being
already a good indication of ergodicity by Birkhoff’s theorem(4)). The typ-
ical integration time used was t =108, after allowing a suitable relaxation
time of order trel =107. Since we are not interested in nonequilibrium fea-
tures, no ensemble average was done (the coincidence of time and phase
space averages relying on the Birkhoff–Khinchin theorem for ergodic sys-
tems(4)). For simplicity, the harmonic frequency of the particle, ω, was set
to unity (in contrast to the approach of BMWG, the specific value of ω is
immaterial for the validity of the method adopted here).

4.1. Momentum Distribution

As a first probe of ergodicity, one can test whether the observed histo-
gram of the momentum of the particle f (p) approximates the distribution
law obtained from the structure function Ωp(E) of the remaining degrees
of freedom x, � and � (see below), i.e., for large enough integration times
one expects

f (p)→ Ωp(E − p2

2 )

Ω(E)
, (29)

where Ω(E) is the structure function of the whole system. Most quantities
of interest here, including Ωp, can be obtained from the (2N + 1)-dimen-
sional phase space volume

Φp(E)=
∫

dx d�d� θ

(
E −

[
x2

2
+H2(�,�)

])
, (30)

where θ is the unit step function and the coupling Hamiltonian H1,2 was
neglected (weak coupling approximation). In fact, assuming the above vol-
ume to be bounded and sufficiently smooth for all E >0 (such assumption
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will be adopted throughout this section), the phase space area Ωp can be
obtained from Φp via the general relation(13)

Ωi(E)= dΦi(E)

dE
, (31)

where i labels the desired (sub)volume. Though evaluating Eq. (30) can
be a hard task for general Hamiltonians, for the choice presented in Eqs.
(26)–(28) a simple scaling argument can be used to show that (cf. ref. 14):

Φp(E)= ã E(3N+2)/4, (32)

where henceforth the symbols ã, b̃, etc. will refer to any function that does
not depend on E. Equation (31) then gives

Ωp(E)= b̃ E(3N−2)/4 (33)

and therefore, by inserting this relation in Eq. (29), one gets the desired
distribution law

f (p)= 1
Z

(
1− 1

E

p2

2

)(3N−2)/4

, (34)

where Z is a normalization constant. This expression is valid for any N >

0, provided the dynamics of the system is sufficiently ergodic (recall that
f (p) was defined as a histogram). Note also that in the limit N →∞ with
E/N constant one recovers the usual Boltzmann factor exp(−βp2/2), with
β =3N/4E.

Figure 1 shows the momentum distribution function of the harmonic
oscillator obtained from the numerical simulations for the booster model
in Eq. (27), from which one obtains good evidence for ergodicity given its
clear agreement with Eq. (34). The “departure from Gaussianity” intro-
duced by BMWG was also computed, namely q = 1 − 〈p4〉/[3〈p2〉2], to
show not only that the distribution is close to canonical (see below how-
ever), but also that its numerical value is very close to the one obtained
from the model of ref. 5. Indeed, the observed value of q in the present
model was q = 0.1255 for N = 8, which should be compared to q ≈ 0.1
obtained by BMWG for the same number of particles.
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-1.5 -1 -0.5 0
log10 (1-p2/2E)

2

3

4

5

6

7

8

lo
g 10

 f(
p)

N=4
N=8

g=0.1

2.503

5.559

Fig. 1. Logarithmic plot of the histograms f (p) obtained from the numerical simulations
for N = 4,8 and g = 0.1. The slope of each curve is indicated and should be compared with
the values predicted by Eq. (34), viz. 2.5 (N = 4) and 5.5 (N = 8). The finite-time sampling
manifests here through the departure from the predicted power-law at the tail of the distri-
butions, which nevertheless tends to smooth out as t →∞.

In Section 4.2 we will be observing the temperature of the system via
the average momentum square of the particle. Here I show that the mis-
match between TΦ and TΩ to be found in that section can alternatively be
attributed to the noncanonicity of f (p). Indeed, using the integral

∫ 1/
√

a

−1/
√

a

pn
(

1−ap2
)b

dp = (1+ (−1)n)

2a
1
2 (n+1)

·
Γ (b+1)Γ

(
1+n

2

)
Γ
(

3
2 +b+ n

2

) (a, b>0),

(35)

where Γ (u) is the gamma function and n = 0,1,2, . . . we obtain, after
using the property Γ (u+ 1)=uΓ (u) and reading the values of a, b from
Eq. (34),

〈
p2
〉
=
∫ √

2E

−√
2E

p2f (p) dp = 4E

3N +4
(36)
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(compare with Eq. (39)). Note that this result differs from the one
obtained using the Boltzmann factor, namely

〈
p2
〉= 4E/3N (compare Eq.

(40)). This difference, though small for large N , is ultimately the moti-
vation for BMWG to conclude that their corrected temperature is indeed
an improvement over the “standard” one (TΩ , obtained from Boltzmann’s
principle), which shows additionally that, contrary to the discussion that
accompanies Fig. 6 of ref. 5, the small departure from canonicity of the
momentum distribution is a pertinent property of these small systems.

4.2. Temperature

Using the same weak coupling condition adopted in the last section,
one can neglect the interaction Hamiltonian and compute both the phase
space volume and area (this time for the whole system) through a pro-
cedure similar to the one leading to Eqs. (32) and (33). One then finds,
respectively,

Φ(E) = c̃ E(3N+4)/4, (37)

Ω(E) = d̃ E3N/4, (38)

from which the temperatures TΦ and TΩ follow trivially, viz.

TΦ =
(

∂ ln Φ(E)

∂E

)−1

= 4E

3N +4
= 4ε

3
1

1+4/3N
, (39)

TΩ =
(

∂ ln Ω(E)

∂E

)−1

= 4E

3N
= 4ε

3
, (40)

where ε ≡E/N is the total energy per degree of freedom and k was set to
unity (this harmless simplification will be adopted throughout the remain-
ing part of the paper). In what follows, the numerically observed temper-
ature Tobs is defined as the time-average v2, which should coincide with
the ensemble average

〈
v2
〉

(and hence with TΦ , cf. Eq. (24)) for ergodic sys-
tems.

In Fig. 2 the observed temperatures from the numerical simulations
with ε = 1.0, g = 0.1 and various values of N are presented, as well as
the analytic predictions Eqs. (39) and (40). The agreement with TΦ is
evident, and we can see clearly from this figure that both temperatures
should coincide in the thermodynamical limit.(4) In order to verify that
these results can in fact explain the discrepancy found by BMWG between
the “standard” form of Boltzmann’s principle (which gives rise to Eq. (19))
and their numerical simulations, the relative error E = (Tobs −TΩ)/TΩ was
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Fig. 2. Comparison between the observed temperatures of the particle Tobs from the
numerical simulations (full circles) and from the analytic predictions, Eqs. (39) and (40)
(continuous and dashed lines, respectively). The observed equilibrium temperature Tobs

was obtained from the asymptotic value of the time-average v2 after allowing a suitable
relaxation and observation time (see text).

computed both for the data available here and in that reference (the tem-
peratures from the latter are TΩ ≈ 14.95 and Tobs ≈ 11.78), giving EA ≈
−15.2% and EB ≈ −21.2 %, respectively. Note that not only the magni-
tude of these relative deviations are quite close, but also their sign is the
same, i.e., the general trend of TΩ is to overestimate the final equilibrium
temperature, just as BMWG found (see also ref. 15). The additional error
EA −EB ≈6 % can be further explained from the fact that the phase space
area in the approximate temperature expression of BMWG involves the
degrees of freedom of the booster only, neglecting the contribution of x

and p which tends to increase TΩ and thus to decrease E . This is the
source of the “10%” deviation from the observed temperature mentioned
before the conclusions of ref. 5.

5. CONCLUSIONS

It is important to emphasize that the purpose of the present contribu-
tion was not to determine whether the volume or the area entropy is the
correct starting point of thermostatistics for small systems. Although the
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former bears an important thermodynamic property that is independent
of the system size (known as “adiabatic invariance,” cf. ref. 16 and refer-
ences therein), these very small and isolated systems such as the ones stud-
ied by BMWG are usually far removed from experience, and we do not
know whether our empirical and macroscopic thermodynamics acquires a
different form in this case. Experiments with small clusters of atoms is a
field that can potentially settle this question(17), and a theoretical compar-
ison between the two entropies above has already been carried out in this
context.(18)

Quite apart from elucidating the ad hoc definition of the BMWG
temperature (cf. discussion following Eq. (21)), the present contribution
has established that one does not have to resort to dynamical quantities
such as time correlation functions in order to predict the equilibrium tem-
perature of a small system. Such idea was put forward in the work of ref.
5 in the form of a correction to the temperature that follows from Eq. (3)
for the particular case of a system composed of a particle coupled to a
set of “irrelevant” degrees of freedom, leading its authors to conclude that
a correction for the Boltzmann principle is necessary when one is dealing
with small systems. The key identity that escaped the attention of BMWG
is Eq. (24), which establishes an exact relation between the equipartition
temperature and the phase space volume, a quantity that can be computed
much in the same way as the usual phase space area. This shows that, as
long as we are working with the assumptions of ref. 5, the particular form
of the Boltzmann principle in Eq. (2) is sufficient for predicting the equi-
partition temperature, without any dynamical correction.
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